Hauptinhalt
Topinformationen
Forschungsprogramm des GraKo
Das Forschungsprogramm des Graduiertenkollegs des Joint Lab wird durch die Forschungsschwerpunkte
(1) Künstliche Intelligenz und Data Science - Methodenentwicklung und Datenanalyse,
(2) Autonome Systeme - Sensornetzwerke, Robotersteuerung und Datenerfassung, sowie
(3) Hybride Prozess- und Systemmodellierung - Anwendungsbasierte Entwicklung von
Prozesssteuerungen und Digitalen Zwillingen gebildet. Diese Schwerpunkte umfassen insbesondere
die folgenden Forschungsthemen:
- Explainable AI Methods for Multimodal Data in the Bioeconomy
- Trustworthy Intelligent Soil Mapping
- Informed Machine Learning on Sparse Data and Information in the context of barn climate and emissions
- Data integration and processing platform using data science and machine learning techniques for
real time prediction of dairy cattle health and welfare changes - Simulation of Environment Sensors – towards digital twins of autonomous agricultural machines
- Auto-ML with synthetic training data and hardware in the Loop
- Deployment Strategies for in-situ Sensors in Agriculture
- Network as a Sensor in Agriculture
- Reconfigurable ROS Nodes for Modular Agricultural Robots
- Interpretable machine learning methods for identifying plant stress in crops by using and optimizing UAV data
- Estimation and prediction of biophysical crop parameters and water-deficit stresses, using multi-sensor satellite data and AI
- Integrated AI analysis of geometric and spectral UAV data using machine learning to derive high-resolution bio-physical and bio-chemical plant properties in agroforestry systems
- Monitoring biodiversity of agroforestry systems, using multisensor Earth-Observation data and deep learning
- Intelligent Processes for High-Quality Food Production
- Digital twins for sensor data-based drying of biomass under changing outdoor weather conditions
- Development of process models for bioconversion
- Modelling and efficient processing of complex sensor data for knowledge discovery and real-time change detection of fruit respiration rate during long-term cold storage
- Developing a digital twin for strategic decisions at the farm scale
- Development of predictive models to control the anaerobic digestion process
- Linking digital twins to individual-based models to predict heat stress effects on dairy cattle