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1 Introduction and Previous Works

The cold storage of apples is a critical phase in post-harvest management,
aiming to maintain quality and extend shelf life. Current practices often fail
to dynamically adjust to the changing physiological responses of apples under
storage and face challenges such as respiration rate fluctuations and moisture
condensation [1]. The advent of sensor technologies offers novel ways to face
these challenges and enhance the monitoring and control of storage conditions [2].
Prior studies have laid the groundwork by demonstrating the importance of
precise monitoring using sensors [3]. To effectively manage the factors such
as fruit respiration, atmospheric conditions, and surface wetness, the sensor
technologies have emerged as essential tools for capturing critical data within the
storage environment. These sensor-based systems are not only applicable in the
experimental and research settings but are also scalable to real-life commercial
storage facilities.

This proposal prioritizes the deployment and integration of two specific
sensors developed by the Leibniz Institute for Agricultural Engineering and
Bioeconomy (ATB): the Respiration Measuring Sphere (RMS88) and Wetness
Sensor. These sensors have demonstrated feasibility in the real-time monitoring
of critical parameters affecting the storage quality of apples.

1.1 Respiration Measuring Sphere (RMS88)

The RMS88 Respiration Measuring Sphere [4] [5] [6] [7] provides an in-depth
view into the respiratory processes of apples. The respiration rate of apples is an
indicator of their metabolic activity, which determines their post-harvest life and
quality. Fluctuations in the respiration rate can lead to inconsistent quality of
the stored apples, complicating inventory management and leading to potential
waste.

In the previous works, the application of the respirometer involved measuring
the respiration rate of Pinova apples in commercial controlled atmosphere storage
for 32 days [4]. This demonstrated the system’s ability to detect real-time changes
in respiration rate and respiration quotient.
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The RMS88 respirometer can be used for real-time assessment of respiration
rates concentrations with the aim to determine the impact of extrinsic factors
(such as temperature, gas composition, and storage time) on respiration rates.

1.2 Wetness Sensor

Water vapor condensation on the surfaces of stored apples presents a promi-
nent challenge within storage scenarios, particularly because of its impact on
product quality due to potential microbial growth [8].

To monitor these condensation events, a Wetness Sensor attached to the apple
surface was developed. The study successfully identified water vapor condensation
on the surfaces of stored apples and documented how the refrigeration cycle,
comprising of cooling and re-warming phases, can be interrupted by defrosting
processes and how this affects condensation. Different types of cycles were
observed, with varying durations of condensate presence on the apple surface [8].

Measuring the condensation processes with the Wetness Sensor can be used to
evaluate the impact of refrigeration system operation cycles on the condensation
process and adjust the control strategies for refrigeration components to mitigate
moisture condensation.

2 Proposed Project

How can real-time sensor data from advanced sensor systems like the RMS88
respirometer and Wetness Sensor be efficiently processed? To what extent can
predictive AI and machine learning models improve the decision-making? How
can we develop and validate a Digital Twin to refine storage conditions for
apples?

The principal objective of this research project is to develop and validate
the scalable, data-driven Digital Twin, utilizing a high throughput of streaming
sensor-generated data and various AI and machine learning models to create
a predictive, adaptable system for improving the long-term cold storage. By
leveraging large amounts of streaming data from advanced sensor systems like
RMS88 respirometer and Wetness Sensor, the system could be used for smart
decision-making to continually refine storage conditions, ensuring apple freshness
and extending shelf life, while also addressing energy efficiency, sustainability
and explainability concerns.

The research will be grounded in multiple components: data acquisition,
predictive modelling, Digital Twin, model explainability.

2.1 Data Acquisition

Data streams will be sourced from a network of RMS88 and Wetness Sensors
deployed throughout the storage facility, collecting diverse metrics such as gas
concentrations, temperature, humidity, and surface wetness in real time. This
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streaming approach will result in a dense, uninterrupted flow of information
fundamental for further analysis.

2.1.1 Respiration Measuring Sphere (RMS88) Data Collection

Table 1: Example of data from RMS88 respiration measuring sphere
Date, Time O2, % T, °C P, Bar CO2, % VCC, V H, %

04.12.2019 16:10 7,17 5,4 1016 3,3509 4.075 86,2
04.12.2019 16:15 7,17 5,4 1016 3,3569 4.065 86,2
04.12.2019 16:20 7,16 5,5 1017 3,3579 4.072 86,3

Data from the RMS88 sensor (Table 1) provides insights into the respiratory
function of stored produce. The following data is collected:

– Concentrations of Oxygen, which are measured using a fluorescence-based
optical sensor within the RMS88, with a range extending from non-existent
(0%) to a saturation threshold (25%).

– Ambient Temperature.

– Pressure, indicating of the gas exchange dynamics.

– Levels of Carbon Dioxide, featuring dual nondispersive infrared CO2 sensors
for precise readings in a lower range (up to 0.5%) as well as a higher range
(up to 20%).

– Supply voltage metadata, indicating the operational status of the sensor.

– Relative Humidity.

The sensor’s data collection can be timed from 1 to 60-minute intervals,
tailored to research or monitoring needs. Data can be stored internally for
durations extending up to 100 days due to its low power consumption [6]. The
system also enables automated, real-time calculation of the respiration rate (RR)
of stored produce. Respiration rates are quantified following Eqs. (1) and (2)
below, derived from changes in gas concentration over time inside the controlled
chamber, taking into account the free volume and mass of the stored produce [9]:

RO2 =
∆O2

100×∆t
× Vnet

Mp
(1)

RCO2 =
∆CO2

100×∆t
× Vnet

Mp
(2)

Here, RO2 and RCO2 denote the changes in Oxygen and Carbon Dioxide
concentration (%), respectively; ∆t represents the time interval; Vnet is the net
volume of the respirometer; and Mp is the mass of the produce in kilograms.
The Respiratory Quotient (RQ) is determined as the ratio of RCO2 over RO2,
providing additional insights into the metabolic processes occurring within the
stored environment.
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2.1.2 Wetness Sensor Data Collection

The function of Wetness Sensor is to monitor the moisture conditions on the
surface, providing an electrical signal that correlates to the presence of water.
The resistance changes when water connects the electrodes of the sensor, and as
the water evaporates, the resistance increases until it indicates a dry state. This
resistance-based measurement provides a timeline that illustrates the periods of
wetness experienced by the fruit [8]. The concrete data provided by the wetness
sensors include:

– Wetness Presence. An indication of when moisture is present on the surface
of the fruit, suggesting condensation events.

– Retention Time. The length of time that moisture remains on the fruit sur-
face, from the moment condensation forms until it completely evaporates.

Although wetness sensors do not directly measure other parameters, such as
temperature, humidity, surface temperature and dew point temperature, they
were also measured during the previous experiments [8].

– Relative humidity of the air was measured using digital combination sensors,
specifically SHT35.

– Surface Temperature was measured with a contactless infrared thermome-
ter, specifically the MLX 90416.

– Thermal images from ThermoCAM HD 600 camera were taken to visually
examine the temperature distribution on the fruit surface.

This additional data can also be used in the research project and integrated
with other sensor measurements to get a comprehensive understanding of the
micro-environmental conditions affecting fruit surfaces.

2.2 Predictive Modelling

Important part of this research project is development of various AI and
machine learning models with the aim for a resulting Digital Twin to be well-
equipped to adapt and respond intelligently to a range of storage conditions
and apple states. Some of the proposed approaches include anomaly detection,
regressive modelling and time-series forecasting.

2.2.1 Anomaly Detection via Self-Supervised Learning

How can self-supervised learning techniques be effectively utilized to identify
anomalies and prevent potential issues in the changing environment of apple
cold storage? Given the complex variability in cold storage environments, it is
important to rapidly identify conditions that deviate from the norm. Anomaly
detection can be employed using self-supervised learning, a technique that learns
from the data itself without explicit labelling of anomalies. The approaches
could be adopted from different domains, like detecting credit card fraud [10] or
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network intrusions [11]. Developing these models will allow finding distinctions
between normal operational patterns and outliers that could signify potential
issues in storage, enabling preemptive corrective actions.

2.2.2 Regressive models

To what degree can AI and machine learning models based on historical
and real-time sensor data predict key variables indicative of apple quality? A
targeted approach will be developed to predict key variables indicative of apple
quality, such as weight loss and ethylene production. By compiling historical
and real-time sensor data, such as temperature, humidity, and respiration rates,
regression models will be able to forecast these quality indicators.

2.2.3 Time-Series Forecasting

How can we understand the temporal patterns and forecast future conditions
in apple storage? Many variables in apple storage consist of time-series data,
recording changes over regular intervals. Time-series forecasting models will
be developed to understand temporal patterns and forecast future conditions,
providing valuable insight for dynamic storage adjustments.

2.3 Digital Twin

How can real-time sensor data and predictive models be combined into a
comprehensive integrated system? The mentioned predictive models will be
iteratively developed and integrated into Digital Twin [2] [12] [13], capable of
managing the complexities of real-time apple storage. By integrating these
models into a comprehensive Digital Twin, the project can not only predict but
also prescribe solutions to optimize long-term storage conditions, ensuring the
highest quality of apples and balancing economic and ecological sustainability.

By creating a Digital Twin, a virtual representation that mirrors the real-
time state of the apple storage environment can be constructed. This virtual
counterpart will not only showcase current conditions but also simulate and
test various ”what if” scenarios to inform strategic decisions without disrupting
actual operations [2]. The predictive modelling and sensor data streams will
feed into the Digital Twin, ensuring a seamless transition between virtual and
physical environments.

Beyond predicting future states, the Digital Twin system will leverage the
predictions to suggest optimal courses of action. This will include experimenting
with different control strategies, observing the effect of varying refrigeration
cycles, humidity levels, and gas compositions on the predicted quality indicators,
seeking the most effective preservation methods.

2.4 Explainability and Decision Support

In what ways can we increase transparency and enhance the understanding of
complex data-driven decision processes for end-users? The Digital Twin amplifies
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the explainability of underlying AI and machine learning models by providing a
virtual platform where various scenarios and interventions can be simulated and
analyzed. With a Digital Twin in place, the users can visualize how different
storage strategies affect key variables such as ethylene production or apple weight
loss, all without risking actual stored produce. This visual representation of
model outcomes helps in decoding complex AI and machine learning decisions,
illustrating the impact of various factors on apple preservation and revealing the
reasoning behind specific AI and machine learning driven suggestions.

Through these mechanisms, the Digital Twin not only serves as an advanced
tool for storage management but also as a medium to add transparency into
complex data-driven decision processes. It ensures that the application of AI
and machine learning to cold storage is accessible, explainable, and aligned with
the operational understanding and goals of the end user. This integration of
state-of-the-art models with human-centric interfaces amplifies the potential of
smart agriculture technologies and their role in transforming the future of food
storage.

3 Conclusion

The proposal is based on the alignment of current cutting-edge AI and machine
learning advances with the necessity to innovate in cold storage practices. Using
the prior work on sensors as a foundation, the project will implement predictive
modelling and build a sophisticated Digital Twin to actively manage apple
storage in real-time. This comprehensive Digital Twin has the potential to bring
together sensory data and AI and machine learning models to create an adaptive,
responsive storage environment capable of optimizing conditions for preserving
apple quality and cutting down food waste. The explainability mechanisms will
make such a system accessible and understandable for the end user, potentially
creating a new wave of intelligent cold storage solutions.
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