

Learning Complex Barn Climate and Emissions Dynamics with Simulation-Informed Machine Learning

Anh-Duy Pham¹, Tim Römer¹, Martin Atzmüller^{1,3}, David Janke², Thomas Amon²

¹ Osnabrück University, Joint Lab Artificial Intelligence & Data Science, Osnabrück, Germany, {anh-duy.pham, tim.roemer, martin.atzmueller}@uos.de
² Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany, {djanke, tamon}@atb-potsdam.de
³ German Research Center for Artificial Intelligence (DFKI), Osnabrück, Germany

Introduction

 Dairy-cow barns emits greenhouse gases and pathogens, necessitating in-time monitoring. However, practical constraints limit

Methods

• Convert grid-like time-independent simulations to directed graph structures that optimize homogenous behavior of neighborhoods

sensor amounts, creating data gaps

• Alternatives for CFD simulation-based gap filling are needed PM, Pathogenes

Figure 1. Motivation and Challenges of barn emissions management

Main Goals

Efficiently learn comprehensive data representations with minimal sensor input by leveraging simulation-informed insights

Core Ideas

- Split function *f* to two sub-functions for better performance:
 - \circ function f_1 : dimensionality reduction using GNNs
 - \circ function f_2 : match environmental using contrastive learning
- Push the sensor data to the learned graph to get values of the remaining nodes (via function k)

- Learn a function $f: f(x) \rightarrow g(x)$ (Accelerate data generation)
- Then, learn a function $k: k(x, y) \rightarrow f(x)$ (Extrapolate sparse values)
 - \circ *x*: environmental factors,
 - \circ g: CFD simulator,
 - \circ y: sensor set

Analysis

- Nodes in simulation results are grid-like distributed
- Transition between scenarios of different wind direction and convection schemes is not entirely stochastic but exhibits patterns that can be discerned and predicted

Barn CO2 Concentration under different convection schemes and wind directions

Figure 2. Sim-to-real and real-to-sim hybrid AI conceptual model

Key Takeaways

- Apply Informed Machine Learning to integrate aspects of CFD into the learning functions
- Machine Learning as the optimal approach in learning and mining complex knowledge
- Graph Neural Networks as a more potential method in learning sparse grid-like data, compared to Traditional Machine Learning
- <u>Outlook</u>: Generate large datasets from the feedback loop of the Hybrid AI model, then discover or explain implicit/explicit knowledge within the generated information that leads to better decision making

Acknowledgment

This research was supported by the Lower Saxony Ministry of Science and Culture (MWK), funded through the zukunft.niedersachsen program of the Volkswagen Foundation

Please find the digital version, related work, and contact here:

References

- Von Rueden, L., Mayer, S., Beckh, K., Georgiev, B., Giesselbach, S., Heese, R., ... & Schuecker, J. (2021). Informed machine learning–a taxonomy and survey of integrating prior knowledge into learning systems. IEEE Transactions on Knowledge and Data Engineering, 35(1), 614-633.
- Von Rueden, L., Mayer, S., Sifa, R., Bauckhage, C., & Garcke, J. (2020). Combining machine learning and simulation to a hybrid modelling approach: Current and future directions. In Advances in Intelligent Data Analysis XVIII: 18th International Symposium on Intelligent Data Analysis, IDA 2020, Konstanz, Germany, April 27–29, 2020, Proceedings 18 (pp. 548-560). Springer International Publishing.
- 3. Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., ... & Sutskever, I. (2021, July). Learning transferable visual models from natural language supervision. In International conference on machine learning (pp. 8748-8763). PMLR.